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Cloning and sequence analysis of a catechol 2,3-dioxygenase
gene from the nitrobenzene-degrading strain Comamonas sp
JS765
RE Parales, TA Ontl and DT Gibson

Department of Microbiology and Center for Biocatalysis and Bioprocessing, College of Medicine, The University of Iowa,
Iowa City, IA 52242, USA

Comamonas sp strain JS765 utilizes nitrobenzene as a carbon and nitrogen source. The initial attack on nitroben-
zene is carried out by nitrobenzene 1,2-dioxygenase, which converts nitrobenzene to an unstable nitrohydrodiol that
spontaneously decomposes to form catechol and nitrite. Catechol is then degraded via a meta cleavage pathway. We
now report the cloning of a DNA fragment carrying a catechol 2,3-dioxygenase gene from JS765. Nucleotide
sequence analysis revealed three open reading frames (ORFs) predicted to encode proteins of 33.6, 13.0, and
35.0 kDa. Homology searches of the deduced amino acid sequences of three proteins suggested that ORF1 encodes
a LysR-type transcriptional regulator, ORF2 encodes a XylT-type ferredoxin, and ORF3 encodes a catechol 2,3-
dioxygenase. The putative regulatory gene, designated cdoR , is divergently transcribed from the ferredoxin and
catechol dioxygenase genes, cdoT and cdoE , respectively. The catechol 2,3-dioxygenase is most similar in amino
acid sequence to the I.2.C subfamily of extradiol dioxygenases which include 3-methylcatechol 2,3-dioxygenase from
the aniline- and toluidine-degrading Pseudomonas putida UCC2, TbuE from the toluene monooxygenase pathway of
Pseudomonas pickettii PKO1 and catechol 2,3-dioxygenase II from the TOL plasmid pWW15. The substrate range
of the catechol 2,3-dioxygenase produced by the recombinant E. coli strains was very similar to that of the enzyme
present in nitrobenzene-grown JS765, suggesting that we have cloned the catechol 2,3-dioxygenase gene required
for nitrobenzene degradation.
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Introduction echol 2,3-dioxygenase catalyzes ameta ring cleavage to
yield 2-hydroxymuconic semialdehyde (HMS), which isNitroaromatic compounds are widely used in the chemicalfurther metabolized by HMS dehydrogenase and HMSindustry for the production of explosives, dyes, polymers,hydrolase (Figure 1) [30].pesticides and solvents. Many of these compounds are We have initiated a genetic analysis of JS765 to furtherhighly toxic even at low concentrations and have provencharacterize the nitrobenzene degradation pathway andto be recalcitrant in nature. For these reasons, release ofreport here the cloning and sequence analysis of a genenitroaromatic compounds into the environment has causedcluster that contains the catechol 2,3-dioxygenase geneconcern. Nitrobenzene is one of seven nitroaromatic com-from JS765.pounds currently on the US Environmental Protection

Agency’s list of priority pollutants [20].
Comamonassp strain JS765 was isolated for its ability to Materials and methods

grow with nitrobenzene as sole carbon, nitrogen and energy
Bacterial strains, plasmids, and mediasource [30]. JS765 degrades nitrobenzene by an initial
Bacterial strains and plasmids used in this study aredioxygenation reaction catalyzed by nitrobenzene 1,2-
described in Table 1.E. coli strains were grown at 30°C ordioxygenase. The resulting nitrohydrodiol intermediate is
37°C in LB [7] or TB [23] medium with ampicillinunstable and spontaneously decomposes to catechol with
(150mg ml−1) or kanamycin (100mg ml−1) added as appro-the release of nitrite (Figure 1) [30]. This type of dioxy-
priate for plasmid maintenance. When appropriate, 5-genase-catalyzed removal of nitro groups has also been
bromo-4-chloro-3-indolyl-b-d-galactopyranoside (X-Gal)observed in the oxidative pathways for the biodegradation
and isopropyl-b-d-thiogalactopyranoside (IPTG) wereof 2-nitrotoluene [1], 2,4-dinitrotoluene [42], 1,3-dinitro-
added to solid media to final concentrations of 40mg ml−1

benzene [10] and 3-nitrobenzoate [26]. In the second enzy-
and 100mM, respectively. JM109 was grown in LB sup-matic step of the nitrobenzene degradation pathway, cat-
plemented with 2% maltose and 10 mM MgSO4 prior to
l infections. JS765 was grown in modified LB medium
containing no NaCl.
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Figure 1 Initial reactions in the degradation of nitrobenzene byComamonassp strain JS765. HMS, 2-hydroxymuconic semialdehyde.

Table 1 Strains and plasmids used in this study

Strain or plasmid Relevant characteristics Source or reference

Bacterial strains
Comamonassp JS765 Nitrobenzene-degrading isolate [30]
Escherichia coliDH5a D(lacZYA-argF)U169, hdsR17, relA1, supE44, endA1, recA1, thi, gyrA96, Life Technologies,

f80dlacZDM15 Gaithersburg, MD
Escherichia coliJM109 endA1, recA1, gyrA96, thi, hdsR17, relA1, supE44, D(lac-proAB), [F′, traD36, proAB, [46]

lacIqZDM15]
Plasmids
pHC79 Apr, Tcr, cosmid cloning vector [18]
pK19 Kmr, ColE1 origin,lac promoter [35]
pUC19 Apr, Co1E1 origin,lac promoter [46]
pDTG900 pHC79 containing a 34-kbSau3AI partial fragment from JS765 This study
pDTG901 pK19 containing a 7.0-kbSacI fragment from pDTG900 This study
pDTG902 pDTG901 with a deletion of the 4.5-kbSmaI fragment This study
pDTG903 pUC19 containing the 4.5-kbSmaI fragment from pDTG901 This study
pDTG904 pUC19 containing the 1.3-kbHincII fragment from pDTG901 This study
pDTG905 pUC19 containing the 1.7-kbHincII fragment from pDTG901 This study
pDTG906 pK19 containing the 0.8-kbPstI fragment from pDTG904 This study
pDTG907 pK19 containing the 0.5-kbPstI fragment from pDTG904 This study
pDTG908 pDTG901 with a 5.5-kbPstI deletion This study
pDTG909 pDTG901 with a 4.0-kbPstI deletion This study
pDTG911 pDTG905 with the 0.5-kbPstI fragment deleted This study
pDTG917 pDTG905 with a 0.5-kbSmaI-MscI deletion This study

Lee and Rasheed [23]. Total genomic DNA from JS765 of 10 mM catechol using Spra-Tool aerosol propellant
(Fisher Scientific, Pittsburg, PA, USA). Recombinantswas purified as described previously [14]. Restriction

enzyme digestions and ligation reactions were performed expressing catechol 2,3-dioxygenase turned yellow due to
the accumulation of 2-hydroxymuconic semialdehydeunder the conditions recommended by the suppliers

(Promega Corp, Madison, WI, USA; New England Biolabs, [12,28].
Beverly, MA, USA). DNA fragments were purified from
gel slices using the Geneclean Spin Kit (Bio 101, Vista,Nucleotide sequence analysis

Prior to sequencing, plasmid DNA isolated using theCA, USA). Transformation ofE. coli strains and standard
molecular biology techniques were as previously Qiagen Midi Kit was further purified using a Centricon-

100 filter unit (Amicon, Beverly, MA, USA). Nucleotidedescribed [2].
sequencing was carried out by the University of Iowa DNA
Facility using an Applied Biosystems 373A AutomatedCloning of the JS765 catechol 2,3-dioxygenase gene

JS765 genomic DNA was partially digested withSau3AI, DNA Sequencer. Custom oligonucleotides were obtained
from Genosys Biotechnologies (Midland, TX, USA).dephosphorylated, and ligated intoBamHI-digested pHC79

by a previously described method [36]. Ligated DNA was Sequence analysis was carried out using Gene Jockey
software (Biosoft, Cambridge, UK) and the Wisconsinpackaged into bacteriophagel particles using a Gigapack

II Packaging Extract according to the manufacturer’s Sequence Analysis Package (Genetics Computer Group,
Madison, WI, USA [9]). The BLAST network service at theinstructions (Stratagene Cloning Systems, La Jolla, CA,

USA). JM109 was infected with the cosmid library [36] National Center for Biotechnology Information (Bethesda,
MD, USA) was used to identify similar sequences in theand plated onto LB agar plates containing ampicillin.

Ampicillin-resistant colonies were sprayed with a solution SWISS-PROT and GenBank databases.
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Figure 2 Subcloning of the catechol 2,3-dioxygenase gene. Shown is the restriction map of pDTG901 and the catechol 2,3-dioxygenase (CDO) activity
of subclones determined by the catechol spray plate assay. Subclones are described in Table 1.

Preparation of cell extracts Materials
Catechol was obtained from Aldrich Chemical Co, Mil-E. coli JM109(pDTG900), DH5a(pDTG901) and

DH5a(pDTG904) were grown in LB medium contain- waukee, WI, USA. Protocatechuate was from Sigma
Chemical Co, St Louis, MO, USA. 3-Methylcatechol anding ampicillin at 30°C. DH5a(pDTG901) and

DH5a(pDTG904) were induced with 100mM IPTG for 4-methylcatechol were obtained from Pfalz and Bauer,
Waterbury, CT, USA. 3-Chlorocatechol was provided by2.5 h when culture turbidity at 660 nm reached 0.6.

JM109(pDTG900) was allowed to continue growing until Sol Resnick, Department of Microbiology, University of
Iowa.the culture turbidity reached 0.9. Cells were harvested by

centrifugation and stored at−20°C. Frozen cells were
thawed and suspended in 50 mM Tris-HCl (pH 7.5). Cells

Results and discussionwere broken by passing twice through a chilled French
pressure cell at 20000 lb in−2. Cell debris and membranes Gene localization and subcloning
were removed by centrifugation at 150000× g for 1 h at A cosmid library was generated by ligating a partialSau3AI
4°C. digest of JS765 genomic DNA withBamHI-digested

pHC79 cosmid. Of 490 colonies screened on catechol spray
plates, one turned yellow. Cosmid DNA was isolated fromEnzyme assays
this recombinant and designated pDTG900. RestrictionOxygen uptake by catechol 2,3-dioxygenase (EC 1.13.11.2)
mapping indicated that approximately 34 kb of DNA waswith various substituted catechols was determined at 30°C
inserted in the 6.4-kb vector. Digestion withSacI revealedwith a Clark-type oxygen electrode (Rank Brothers, Cam-
the presence of five fragments (17.0, 7.2, 6.7, 6.2 andbridge, UK). Reactions (1 ml total volume) were carried
2.7 kb) which were subcloned intoSacI-digested pK19. Theout in air-saturated 50 mM Tris-HCl buffer (pH 7.5) con-
subclone carrying the 7.2-kbSacI fragment was shown totaining an appropriate amount of cell extract to give a linear
have catechol 2,3-dioxygenase activity, and was designatedO2 uptake rate. Reactions were initiated by the addition of
pDTG901. The restriction map of pDTG901 is shown insubstrate (1 mM final concentration). All rates were cor-
Figure 2. Construction of the deletion clones and subclonesrected for endogenous respiration.
described in Table 1 and subsequent analyses for catecholCatechol 2,3-dioxygenase activity was measured spectro-
2,3-dioxygenase activity localized the gene to the 1.3-kbphotometrically as previously described [31]. Reactions
HincII fragment on pDTG904 (Figure 2).were carried out in 50 mM Tris-HCl buffer (pH 7.5) con-

taining catechol at a final concentration of 1 mM. Reactions
were initiated by the addition of cell extract. The formation Sequence analysis

Both strands of the 1.3-kbHincII fragment of pDTG904of 2-hydroxymuconic semialdehyde was monitored at
375 nm (e = 33400 mol−1 cm−1 [4]). One unit of catechol were completely sequenced using a combination of sub-

clones (pDTG904, pDTG906, pDTG907) and oligonucleo-2,3-dioxygenase activity was defined as the amount of
enzyme required to form onemmole of 2-hydroxymuconic tide primers. Portions of pDTG901, pDTG905, pDTG911,

and pDTG917 were sequenced in order to complete thesemialdehyde per min. Protein concentrations were deter-
mined by the method of Bradford [5] with bovine serum sequence of the two upstream open reading frames (ORFs)

in the gene cluster. The G+C content of the sequencedalbumin as standard.
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Figure 3 Nucleotide sequence of thecdoRTEgene cluster from JS765 which encodes the LysR-type regulator, plant-type ferredoxin, and catechol 2,3-
dioxygenase (GenBank accession number U93090). Deduced amino acid sequences are shown below the nucleotide sequence. Asterisks (*) indicate
stop codons. Restriction sites are underlined and labeled above. Potential ribosome-binding sites are italicized and labeled RBS. The putative promoter
for the cdoT gene is underlined and the -10 and -35 hexamers labeled below. The putative promoter for thecdoRgene is overlined and the -10 and
-35 hexamers labeled above. Conserved cysteines (Cys-45, Cys-50, Cys-53, Cys-86) in the plant-type ferredoxin are indicated byC. In the catechol 2,3-
dioxygenase, conserved metal-binding residues (His-150, His-220, Glu-271), active site residues (His-206, His-252, Tyr-261), and conserved residues
involved in domain–domain interactions (Pro-110, Gly-112, Pro-265, Gly-267) and substrate binding (Phe-198) are double underlined.

region was 64%, typical ofComamonassp genes which JMP134 [24], and TcbR fromPseudomonassp P51 [45].
Residues 18–37 of the CdoR form a helix-turn-helix motifrange from 61–68% G+C [8,44].

Nucleotide sequence analysis revealed three ORFs which very similar to the LysR consensus sequence [39]. The
cdoRgene is divergently transcribed from thecdoTgene,were designatedcdoRTE (Figure 3). ThecdoR gene en-

codes a 306-amino acid protein. Homology searches with and putative sigma-70 type promoters for thecdoR and
cdoT genes were identified (Figure 3). These observationsthe amino acid sequence deduced fromcdoRsuggested that

the 33 639 molecular weight protein is a member of the suggest that CdoR regulates transcription ofcdoTE,
although this has not yet been tested.LysR family of transcriptional regulators. Pairwise com-

parisons revealed the highest amino acid identities (34– ThecdoTgene encodes a protein with a calculated mol-
ecular weight of 12983. Analysis of the amino acid36%) with activators of theortho or modified-ortho cleav-

age pathway genes (Table 2). These regulators include sequence deduced fromcdoTrevealed strong homology to
plant-type ferredoxins, especially the XylT-type ferredoxinsClcR from plasmid pAC27 [6], CatR fromPseudomonas

putida PRS2000 [37], TfdR fromRalstonia eutropha which are associated with aromatic compound degradation
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Gene Predicted product (No. amino acids) Similar protein (No. amino acids) Amino acid identitya GenBank accession
(%) No. [Reference]

cdoR Regulatory protein (306) TfdR (295) 35.9 P10086 [24]
ClcR (294) 35.3 Q05840 [6]
BphR (314) 34.8 D38633
CatR (289) 34.4 P20667 [37]
TcbR (294) 33.7 P27102 [45]
LysR (311) 22.0 P03030 [43]
NahR (300) 18.6 P10183 [47]

cdoT Plant-type ferredoxin (123) TbuW (119) 43.7 U20258 [21]
NahT (108) 37.7 J05317 [16, 48]
PhlG (101) 34.7 X80765 [17]
PhhQ (101) 34.7 X79063 [29]
XylT (112) 34.2 M64747 [16]
ORF-KF715 (112) 32.7 S78585 [22]
DmpQ (112) 31.2 X60835 [41]

cdoE Catechol 2,3-dioxygenase (314) TdnC (314) 83.8 X59790
CDOII (314) 68.5 U01826
TbuE (314) 60.6 U20258 [21]
XylE (307) 45.5 V01161 [27]
DmpB (307) 45.2 M33263 [3]
PhhB (307) 45.2 X77856 [29]
NahH (307) 44.2 X06412 [13]
PhlH (307) 43.9 X80765 [17]

a% Amino acid identities were obtained using the GAP program from the Wisconsin Package. The gap weight was 3.0 and the gap length weight was 0.1.

(Table 2). Homologous proteins include TbuW from the PKO1 [21] are also very similar. The deduced amino acid
sequence was found to contain conserved residues involvedtoluene/benzene monooxygenase gene cluster ofP. pickettii

PKO1 [21], XylT from the TOL plasmid [16], NahT from in metal binding, catalysis, and dimerization that were
identified in crystallization studies of 2,3-dihydroxy-the NAH7 plasmid [16,48], and DmpQ, PhhQ, and PhlG

from the phenol hydroxylase gene clusters ofPseudomonas biphenyl 1,2-dioxygenases [15,40]. These are indicated in
Figure 3.sp CF600 [41],P. putidaP35X [29], andP. putidaH [17],

respectively. Conserved cysteines characteristic of plant-
type ferredoxins [16] were identified in the deduced aminoCatechol 2,3-dioxygenase activity in cell extracts

Extracts of recombinant strains were tested for the abilityacid sequence and are marked in Figure 3. These amino
acids are potential ligands for plant-type [2Fe-2S] clusters. to convert catechol to 2-hydroxymuconic semialdehyde

(HMS). The extract from JM109(pDTG900) had very lowEach of the plant-type ferredoxin genes mentioned above
is located directly upstream of a catechol 2,3-dioxygenase activity (Table 3). This result was not surprising, since the

cosmid does not carry a strong promoter for expression andgene. OnlyxylT has been characterized in detail. Mutations
in xylT from the TOL plasmid prevented growth onpara- the copy number of the cosmid is low. Activities in extracts

of DH5a carrying pDTG901 or pDTG904 were signifi-substituted aromatic compounds. The associated catechol
2,3-dioxygenase (XylE) was shown to be sensitive to 4- cantly higher. As seen with the catechol 2,3-dioxygenase

from nitrobenzene-induced JS765 [30], heat treatment ofmethylcatechol, andin vivo studies demonstrated that XylT
was able to reactivate XylE that had been inactivated by the DH5a(pDTG901) extract (60°C for 10 min) did not sig-

nificantly reduce enzyme activity (Table 3).4-methylcatechol [33]. InPseudomonassp CF600, DmpQ
was shown to be required for growth withpara-substituted In contrast to results with JS765 [30], the yellow color

produced from catechol by DH5a(pDTG901) extracts didphenols [34], and based on this, DmpQ is predicted to play
a role similar to that of XylT: modulation of catechol 2,3-
dioxygenase (in this case DmpB) activity. By analogy, it Table 3 Catechol 2,3-dioxygenase activity in cell extracts
is possible that CdoT may expand the substrate range of
CdoE by modifying its activity in the presence of suicide Extract source Catechol 2,3-dioxygenase
substrates. specific activity (mmol min−1

mg−1 protein)A 314-amino acid protein with a molecular weight of
35 020 is encoded bycdoE. The deduced amino acid

JS765a 3.04sequence had high homology with several catechol 2,3-
DH5a(pDTG900) 0.005dioxygenases (Table 2), especially those of the I.2.C
DH5a(pDTG901) 0.55 (0.47)b

subfamily of extradiol dioxygenases [11]. The most similarDH5a(pDTG904) 0.26
protein is TdnC (84% amino acid identity) from the aniline-
and toluidine-degradingP. putidaUCC2 [38]. CDOII from aData from [30].

bActivity after incubation of crude cell extract at 60°C for 10 min.the TOL plasmid pWW15 [19], and TbuE fromP. pickettii
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not fade with time, even when catechol was provided at a will be interesting to identify the inducer associated with

the cdo gene cluster.reduced concentration (100mM) or when NAD (500mM)
was added. This result suggests that the HMS hydrolase
and HMS dehydrogenase are not encoded on the DNA frag-Acknowledgements
ment.
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