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Cloning and sequence analysis of a catechol 2,3-dioxygenase
gene from the nitrobenzene-degrading strain Comamonas sp
JS765

RE Parales, TA Ontl and DT Gibson

Department of Microbiology and Center for Biocatalysis and Bioprocessing, College of Medicine, The University of lowa,
lowa City, IA 52242, USA

Comamonas sp strain JS765 utilizes nitrobenzene as a carbon and nitrogen source. The initial attack on nitroben-
zene is carried out by nitrobenzene 1,2-dioxygenase, which converts nitrobenzene to an unstable nitrohydrodiol that
spontaneously decomposes to form catechol and nitrite. Catechol is then degraded via a meta cleavage pathway. We
now report the cloning of a DNA fragment carrying a catechol 2,3-dioxygenase gene from JS765. Nucleotide
sequence analysis revealed three open reading frames (ORFs) predicted to encode proteins of 33.6, 13.0, and
35.0 kDa. Homology searches of the deduced amino acid sequences of three proteins suggested that ORF1 encodes

a LysR-type transcriptional regulator, ORF2 encodes a XyIT-type ferredoxin, and ORF3 encodes a catechol 2,3-
dioxygenase. The putative regulatory gene, designated cdoR, is divergently transcribed from the ferredoxin and
catechol dioxygenase genes, cdoT and cdoE, respectively. The catechol 2,3-dioxygenase is most similar in amino
acid sequence to the 1.2.C subfamily of extradiol dioxygenases which include 3-methylcatechol 2,3-dioxygenase from

the aniline- and toluidine-degrading  Pseudomonas putida UCC2, TbuE from the toluene monooxygenase pathway of
Pseudomonas picketti PKO1 and catechol 2,3-dioxygenase Il from the TOL plasmid pWW15. The substrate range
of the catechol 2,3-dioxygenase produced by the recombinant E. coli strains was very similar to that of the enzyme
present in nitrobenzene-grown JS765, suggesting that we have cloned the catechol 2,3-dioxygenase gene required

for nitrobenzene degradation.
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Introduction echol 2,3-dioxygenase catalyzesn@taring cleavage to

. . . . . _yield 2-hydroxymuconic semialdehyde (HMS), which is
Nitroaromatic compounds are widely used in the chemica :
industry for the production of explosives, dyes, polymers F/urther metabolized by HMS dehydrogenase and HMS

esticides and solvents. Many of these compounds a}féydrolase (Figure 1) [30].

E. . ' y ot P We have initiated a genetic analysis of JS765 to further
ighly toxic even at low concentrations and have proven aracterize the nitrobenzene dearadation pathwav and
to be recalcitrant in nature. For these reasons, release § 9 P y

nitroaromatic compounds into the environment has cause IS:tgrhﬁ]raet tsgnf;?:sm%hgngafeecqr%?n;%-znilysgng; ea ggrr:g
concern. Nitrobenzene is one of seven nitroaromatic comg. o IS765 ’ Y9 9
pounds currently on the US Environmental Protection '
Agency'’s list of priority pollutants [20].

Comamonasp strain JS765 was isolated for its ability to Materials and methods
grow with nitrobenzene as sole carbon, nitrogen and energ . ) . .
source [30]. JS765 degrades nitrobenzene by an initiaﬁacre”a/ strains, plasmids, and media

dioxygenation reaction catalyzed by nitrobenzene 1,282cterial strains and plasmids used in this study are
dioxygenase. The resulting nitrohydrodiol intermediate isd€Scribed in Table IE. coli strains were grown at 3C or
C in LB [7] or TB [23] medium with ampicillin

unstable and spontaneously decomposes to catechol wi - . o
the release of nitrite (Figure 1) [30]. This type of dioxy- (120xg mI™) or kanamycin (10Qg mI™) added as appro-
iate for plasmid maintenance. When appropriate, 5-

genase-catalyzed removal of nitro groups has also beif ; ;
observed in the oxidative pathways for the biodegradatiory'0Me-4-chloro-3-indolylg-d-galactopyranoside  (X-Gal)
and isopropylB-d-thiogalactopyranoside (IPTG) were

of 2-nitrotoluene [1], 2,4-dinitrotoluene [42], 1,3-dinitro- X . : . -
benzene [10] and 3-nitrobenzoate [26]. In the second enzydded to solid media to final concentrations ofp4pmi™
matic step of the nitrobenzene degradation pathway, ca@nd 100uM, respectively. JM109 was grown in LB sup-
plemented with 2% maltose and 10 mM Mggsfxior to

A infections. JS765 was grown in modified LB medium
containing no NaCl.
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Figure 1 Initial reactions in the degradation of nitrobenzene@ymamonasp strain JS765. HMS, 2-hydroxymuconic semialdehyde.

Table 1 Strains and plasmids used in this study

Strain or plasmid Relevant characteristics Source or reference

Bacterial strains

Comamonasp JS765 Nitrobenzene-degrading isolate [30]
Escherichia coliDH5« A(laczYAargF)U169, hdsRL7, relAl, supE4, endAL, recAl, thi, gyrA96, Life Technologies,
$»80dacZAM15 Gaithersburg, MD
Escherichia coliJM109 endAL, recAl, gyrA96, thi, hdsRL7, relAl, supE4, A(lac-proAB), [F', traD36, proAB, [46]
lacliZAM15]
Plasmids
pHC79 Ap, Tc', cosmid cloning vector [18]
pK19 Km, ColE1 origin,lac promoter [35]
puUC19 Ap, ColE1 origin,lac promoter [46]
pDTG900 pHC79 containing a 34-kbawBAl partial fragment from JS765 This study
pDTG901 pK19 containing a 7.0-kBad fragment from pDTG900 This study
pDTG902 pDTG901 with a deletion of the 4.5-l8mad fragment This study
pDTG903 pUC19 containing the 4.5-Kkma fragment from pDTG901 This study
pDTG904 pUC19 containing the 1.3-khincll fragment from pDTG901 This study
pDTG905 pUC19 containing the 1.7-kbincll fragment from pDTG901 This study
pDTG906 pK19 containing the 0.8-KBst fragment from pDTG904 This study
pDTG907 pK19 containing the 0.5-KBst fragment from pDTG904 This study
pDTG908 pDTG901 with a 5.5-kP'st deletion This study
pDTG909 pDTG901 with a 4.0-kPst deletion This study
pDTG911 pDTG905 with the 0.5-kBstl fragment deleted This study
pDTG917 pDTG905 with a 0.5-kBmad-Msd deletion This study

Lee and Rasheed [23]. Total genomic DNA from JS765 of 10 mM catechol using Spra-Tool aerosol propellant
was purified as described previously [14]. Restriction(Fisher Scientific, Pittsburg, PA, USA). Recombinants
enzyme digestions and ligation reactions were performed  expressing catechol 2,3-dioxygenase turned yellow due to
under the conditions recommended by the suppliershe accumulation of 2-hydroxymuconic semialdehyde
(Promega Corp, Madison, WI, USA; New England Biolabs, [12,28].
Beverly, MA, USA). DNA fragments were purified from
gel slices using the Geneclean Spin Kit (Bio 101, Vista,Nucleotide sequence analysis
CA, USA). Transformation oE. coli strains and standard Prior to sequencing, plasmid DNA isolated using the
molecular biology techniqgues were as previously Qiagen Midi Kit was further purified using a Centricon-
described [2]. 100 filter unit (Amicon, Beverly, MA, USA). Nucleotide
sequencing was carried out by the University of lowa DNA
Cloning of the JS765 catechol 2,3-dioxygenase gene Facility using an Applied Biosystems 373A Automated
JS765 genomic DNA was partially digested wiBaBAl, DNA Sequencer. Custom oligonucleotides were obtained
dephosphorylated, and ligated irBanHI-digested pHC79 from Genosys Biotechnologies (Midland, TX, USA).
by a previously described method [36]. Ligated DNA was  Sequence analysis was carried out using Gene Jockey
packaged into bacteriophageparticles using a Gigapack software (Biosoft, Cambridge, UK) and the Wisconsin
Il Packaging Extract according to the manufacturer’s Sequence Analysis Package (Genetics Computer Group,
instructions (Stratagene Cloning Systems, La Jolla, CAMadison, WI, USA [9]). The BLAST network service at the
USA). JM109 was infected with the cosmid library [36] National Center for Biotechnology Information (Bethesda,
and plated onto LB agar plates containing ampicillin.MD, USA) was used to identify similar sequences in the
Ampicillin-resistant colonies were sprayed with a solution =~ SWISS-PROT and GenBank databases.
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Figure 2 Subcloning of the catechol 2,3-dioxygenase gene. Shown is the restriction map of pDTG901 and the catechol 2,3-dioxygenase (CDO) activity
of subclones determined by the catechol spray plate assay. Subclones are described in Table 1.

Preparation of cell extracts Materials

E. coli JM109(pDTG900), DH&(pDTG901) and Catechol was obtained from Aldrich Chemical Co, Mil-
DH5a(pDTG904) were grown in LB medium contain-  waukee, WI, USA. Protocatechuate was from Sigma
ing ampicilin at 30C. DH5«(pDTG901) and Chemical Co, St Louis, MO, USA. 3-Methylcatechol and
DH5a(pDTG904) were induced with 100M IPTG for  4-methylcatechol were obtained from Pfalz and Bauer,
2.5h when culture turbidity at 660 nm reached 0.6.Waterbury, CT, USA. 3-Chlorocatechol was provided by
JM109(pDTG900) was allowed to continue growing until Sol Resnick, Department of Microbiology, University of
the culture turbidity reached 0.9. Cells were harvested byowa.

centrifugation and stored at20°C. Frozen cells were

thawed and suspended in 50 mM Tris-HCI (pH 7.5). Cells ) ,

were broken by passing twice through a chilled FrenchResults and discussion

pressure cell at 20000 Ibif Cell debris and membranes Gene jocalization and subcloning

were removed by centrifugation at 15000Q for 1 h at A cosmid library was generated by ligating a parSalBAl

4°C. digest of JS765 genomic DNA wittBanmHI-digested
pHC79 cosmid. Of 490 colonies screened on catechol spray
Enzyme assays plates, one turned yellow. Cosmid DNA was isolated from

Oxygen uptake by catechol 2,3-dioxygenase (EC 1.13.11.2is recombinant and designated pDTG900. Restriction
with various substituted catechols was determined &30 mapping indicated that approximately 34 kb of DNA was
with a Clark-type oxygen electrode (Rank Brothers, Camdnserted in the 6.4-kb vector. Digestion wiad revealed
bridge, UK). Reactions (1 ml total volume) were carriedthe presence of five fragments (17.0, 7.2, 6.7, 6.2 and
out in air-saturated 50 mM Tris-HCI buffer (pH 7.5) con- 2.7 kb) which were subcloned in®ad-digested pK19. The
taining an appropriate amount of cell extract to give a lineasubclone carrying the 7.2-kBad fragment was shown to
O, uptake rate. Reactions were initiated by the addition ofhave catechol 2,3-dioxygenase activity, and was designated
substrate (1 mM final concentration). All rates were cor-PDTG901. The restriction map of pDTG901 is shown in
rected for endogenous respiration. Figure 2. Construction of the deletion clones and subclones
Catechol 2,3-dioxygenase activity was measured spectrglescribed in Table 1 and subsequent analyses for catechol
photometrically as previously described [31]. Reactions2,3-dioxygenase activity localized the gene to the 1.3-kb
were carried out in 50 mM Tris-HCI buffer (pH 7.5) con- Hincll fragment on pDTG904 (Figure 2).
taining catechol at a final concentration of 1 mM. Reactions
were initiated by the addition of cell extract. The formation Sequence analysis
of 2-hydroxymuconic semialdehyde was monitored atBoth strands of the 1.3-kBlincll fragment of pDTG904
375 nm €=33400 mot* cm® [4]). One unit of catechol  were completely sequenced using a combination of sub-
2,3-dioxygenase activity was defined as the amount otlones (pDTG904, pDTG906, pDTG907) and oligonucleo-
enzyme required to form onemole of 2-hydroxymuconic  tide primers. Portions of pDTG901, pDTG905, pDTG911,
semialdehyde per min. Protein concentrations were deteand pDTG917 were sequenced in order to complete the
mined by the method of Bradford [5] with bovine serum sequence of the two upstream open reading frames (ORFs)
albumin as standard. in the gene cluster. The «& content of the sequenced
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388 CGCGACATCTACACCGAGAAGT TCCTCTCGGCGGCCGACGCGCAGGCCGCCCGCAGCCOGCTGT TCAGGCAGGT CTGAGGCCGTTGCCGCCCTTCGCTTCGCTCTTCCCATGCGCACGCA 120
* A PRLGNGGI KA AESTZ KGHA AR

CCACCTCCAGGAACATGGCCAGCACCGGCGACGGATCGCCGCGCCGGTAGAGGCAGCTCAACTCCAGGTCCTTGAGGTGGCGGCTGCGCAAGGGCACGAACACCACGCCCGGCAGGCGCA 240
VVELTFMALUVUPS?PDGURRYULTCSTLETLDIE KTLUHZRSU RILUPVVFVV G P LR

GGCTGGCGGCCGACCGGGTGGCGATGGTCAGCCCGAAGCCACTGGCCACCAGGGCCACGGCCGTCACCACGTCCTCGACGTCCTGCTCGACCGCCAGCCGCACGCCTTCCTGGCGGAAGG 360
L S A A S RTATITULSGT FSGSAVLAV ATV VVDEVDAOQEVALUZRTYVYVGET QTR RTF

CCTCGGCCACTTCCTGCGCCAGCCOCGTGGATGGCCTCGTTGGGGTAGAGGATCATGGGCAGCCCGTCGAGGTCGGCCATCCOGACCTGCCTGOGCTGCGCCAGCGEGTGCGCTTCGTGCA 480
A E AV EQALGHTIA AENUPTYTULTIMPLGDULDA AMGV YOQRURUQALUPUHATEH

Pstl
PCGCCACCAGCAGCGGCTCGCGCAGCACCGACTCGACCACCAGGTCCGGCTCGGGCGGGACCAGTCGGT TGAAGCCCACGCTGATGCGACGT TCGCGCAGCGCCTGCAGCTGCTCGGACT 600
M A VL L PERTLVSEVYVLDZPEZPZPVLRNFG GV SIURZP REIU RILAOQLUGQES

TGGTGAGGTTGTGCAGCGCGATGOGCACCTCGGGCCGCTGGGCGTGGAACTTCGAGAGCACACGGGGAATGACGT TCAGCACGCCCGAGCCGTAGATGCCCACGTCGAGCTGTCCGGTCA 720
K T LNMHILATIRUVEUZPIROQAHTPFIKSTLUVURZPIUVNHNLUVSGSSGYIGVDLOQGT

GGCCCTGCGCCGUGCGCCGCETGOGCTCGGCCGCGCGCTGCACCAGGTGCAGCAGGTTGGGCACCTCGTCCAGCAGCGCCTGGCCCGCCTCGETCAGCTCCACACCGGCCGGCGTGOGCA 840
L GQAARURTREA AARUGQVILHLTLNZPUVET DTLTLAQGA ATETTLEVGAZPTR

GGAACAGCGGCGCACCCATCTCGTCTTCCAGCGCCTTGATCTGGCGCGACAGCGGCGGCTGCGCCATGTGCAGGCGCTCGGCCGCGCGGGTGAAGTTGCGCTCTTCGGCGACCGCCAGAA 960
LFLPAGHEDELAKIQRSLPPQAHHLREAARTPNREEAVAL
Ncol RBS
AC[‘GGCGCAT(:'I'(.‘I‘TTGAGATWGCCNCMTCGGITC&MTACCPCACCAGPATAGGGPCGO\AAMTTCGGPATMCQGGATGACCGCTCCGCCWGGCAAC 1080
F Q R M D K L D M «<-- start cdoR -3 -10
RBS

TGAAGCTGTTGCGTTGAAGAAGAACTGAGACATGTCCCTGTTTGATTCCCGCCCCAAGTTCGCAGTGCACGTGGCCCAGACGGACGAGACCTTTCCCTGCGCCGGCAATGAAAGCCTGCT 1200

start cdoT'" -->M S L F D S R P K F AV HV A QTTDETT FUPUC CAGNTESTLTL 30

HincII

CACCGGCATGGTCCGCCTGGGCCGCAAGGGCATCCCGGTGGGTTGCGTCAACGGCGGCTGCGGGGTCTGCAAGGTCCGCATCGTCGAGGGACAGATCAAGGCCCTGGGGCCGATCAGCCG 1320
T G M VRL GRIKGTIUPVGE@VYVY NGGSE@G VYV @K VU RIVESGO QTIZ KA ALTGT?PTISHR R 70

CGCACACGTGACGCTCGACGAGGAGAACCAGGGCTACACGCTGGCCTGCCGCGTGGCGCCACAGACGCCGGTGAACCTCGAAGTGGCCGGCAAGTTGAGCAAACCGTTTTCCAAGGGGCG 1440
A HV TULDEENOQGYTTULAG@RVYVAUPAOQTUPVNTLEVAGIEKTLSTZ KU?PTFSIKGHR 110

RBS
CGCAGAGTCTGCGACTGCCAGCCCTTCGATTCAGCAGCAGTAACCAACCACC AGGAGACACAACATGGGTGTGATGCGCATCGGGCACGCGAGCCTGAAAGTGATGGACATGGACGOCGC 1560
A E S ATA SPSI QQOQ * start cdoE --> M GV M R I GHASULI KUV MDMMDA A 19
CGTCCGGCACTACGAGAACGTGCTGGGCATGAAGACCACCATGAAGGACAAGGCGGGCAACGTCTACCTCAAGTGCTGGGACGAATGGGACAAGTACTCGGTCATCCTGACCCCGTCGGA 1680
V RHY ENUVILGMI KT TTMI KD KA AGNU VYLK KU CWDEWDI KT Y SV I L TP STD 59
Pstl
CCAGGCCGGCATGAACCACCTGGCCTACAAGGTCGAGAAGGAAGCCGACCTTGAAGCGLTGLAGCAGAAGATCGAGGCCTGGGGTGTGAAGACCACCATGCTCGACGAAGGCACCTTGCC 1800
Q A G M N HULAYK KV EZ KEADILEA ALUGQOA QI KTIZEAWGV Y KTTMLUDETGTTLP 99
Pstl

CTCGACCGGCCGCATGCTGCAGTTCAAACTGCCCAGCGGGCACGAAATGCGCCTGTATGCCAGCAAGGAGTTTGTCGGCACCGACGTGGGCAACATCAATCCCGACCCCTGGCCCGACGG 1920
S T GR ML QF KL P SGHEMRPRLYASZ KETFVGTDVGNTINEPTUDTPWEPDG 139

CCTCAAGGGCGCGGGCGCCCACTGGCTGGACCACTGCCTGCTGGTGTGCGAGATGAATCCCGAGGCCGGCATCAACACCGTGGCCGACAACACCCGCTTCATGACCGAGGCGCTGGACTT 2040
L K GAGAHWLUDH HCLTLVCEMN~BNEZPEAGTINTVADNTRTFMTEATLTDTF 179

CTTCCTGACCGAGCAGGTGCTGGTCGGACCCGAAGGCAACATGCAGGCGACGACCTTCATGGCCCGCACCACCAAGCCGCACGACATCGCCTTCGTGGGTGGCCOGACCAGCGGCCTGCA 2160
FLTEOQVULVYVGPEGNMOQATTTEMARTTI KU PHUDTIATFUVGGUZPTSGLH 219

CCACATCGCGTTCTTCCTGGACTCCTGGCACGACGTGCTCAAGGCCGCCGACGTGATGAGCAAGAACAAGGTGCGCATCGACGTGGCGCCCACCCGCCACGGCCTCACGCGCGGCGAGAC 2280
gIAFFLDSWHDVLKAADVHGKNKVRIDVAPTR;GLTRGET 259

GATCTACTTCTTCGACCCGAGCGGCAACCGCAACGAGACCTTCGCCGGCCTGGGCTATCTGGCCCAGCGCGACCGGCCGGTGACGACCTGGACCGAAGACCAACTGGGCAGCGCGATCTT 2400
I Y F FDEPSGNRNETT FAGLG GYULAQRUDREPVTTWTETUDU QLGSATITF 299

CTATCACACGGGCTATCTGGTGCCGTCCTTCACGGACGTCTATACCTGACCCGGCGCGCAGCCATGCACAAGGAGGAACACAGCATGAAAAAACACAGGGTCATTGCCGCGCTTGCCCTG 2520

Y HT GY LV P ST FTDVYT* 314
Pstl HincIl

GCGGGCGGTCTGGCCGTCAGCAGCGCGCAGGCCGAGGGGCACTACGTGCCGGGCGTGGAAGGGLTGLAGAGCGCCAGCGTGCCGCCGCCCGGCTTTTACTACCTGGGCTACCTCGTCAAL 2640

Figure 3 Nucleotide sequence of theloRTEgene cluster from JS765 which encodes the LysR-type regulator, plant-type ferredoxin, and catechol 2,3-
dioxygenase (GenBank accession number U93090). Deduced amino acid sequences are shown below the nucleotide sequence. Asterisks (*) indicate
stop codons. Restriction sites are underlined and labeled above. Potential ribosome-binding sites are italicized and labeled RBS. The putative promoter
for the cdoT gene is underlined and the -10 and -35 hexamers labeled below. The putative promotercdoRgene is overlined and the -10 and

-35 hexamers labeled above. Conserved cysteines (Cys-45, Cys-50, Cys-53, Cys-86) in the plant-type ferredoxin are in@ichtedebgatechol 2,3-
dioxygenase, conserved metal-binding residues (His-150, His-220, Glu-271), active site residues (His-206, His-252, Tyr-261), and conserved residues
involved in domain—-domain interactions (Pro-110, Gly-112, Pro-265, Gly-267) and substrate binding (Phe-198) are double underlined.

region was 64%, typical o€omamonassp genes which  JMP134 [24], and TcbR frdPseudomonasp P51 [45].
range from 61-68% &C [8,44]. Residues 18-37 of the CdoR form a helix-turn-helix motif
Nucleotide sequence analysis revealed three ORFs which ~ very similar to the LysR consensus sequence [39]. The
were desighatedddoRTE (Figure 3). ThecdoR gene en- cdoRgene is divergently transcribed from tedoT gene,
codes a 306-amino acid protein. Homology searches with  and putative sigma-70 type promoters ddoRrend
the amino acid sequence deduced frodoRsuggested that cdoT genes were identified (Figure 3). These observations
the 33639 molecular weight protein is a member of the  suggest that CdoR regulates transcripticoo T
LysR family of transcriptional regulators. Pairwise com- although this has not yet been tested.
parisons revealed the highest amino acid identities (34— ctlod gene encodes a protein with a calculated mol-
36%) with activators of th@rtho or modifiedertho cleav-  ecular weight of 12983. Analysis of the amino acid
age pathway genes (Table 2). These regulators include  sequence deduceddiievealed strong homology to
ClIcR from plasmid pAC27 [6], CatR fronPseudomonas plant-type ferredoxins, especially the XyIT-type ferredoxins
putida PRS2000 [37], TfdR fromRalstonia eutropha which are associated with aromatic compound degradation
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Table 2 Pairwise comparisons of deduced amino acid sequences with those of similar proteins 389
Gene Predicted product (No. amino acids)  Similar protein (No. amino acids) Amino acid identitenBank accession
(%) No. [Reference]
cdoR Regulatory protein (306) TfdR (295) 35.9 P10086 [24]
CIcR (294) 35.3 Q05840 [6]
BphR (314) 34.8 D38633
CatR (289) 34.4 P20667 [37]
TchR (294) 33.7 P27102 [45]
LysR (311) 22.0 P03030 [43]
NahR (300) 18.6 P10183 [47]
cdoT Plant-type ferredoxin (123) Thuw (119) 43.7 U20258 [21]
NahT (108) 37.7 J05317 [16, 48]
PhIG (101) 34.7 X80765 [17]
PhhQ (101) 34.7 X79063 [29]
XyIT (112) 34.2 M64747 [16]
ORF-KF715 (112) 32.7 S78585 [22]
DmpQ (112) 31.2 X60835 [41]
cdoE Catechol 2,3-dioxygenase (314) TdnC (314) 83.8 X59790
CDOIl (314) 68.5 u01826
TbuE (314) 60.6 U20258 [21]
XylE (307) 455 V01161 [27]
DmpB (307) 45.2 M33263 [3]
PhhB (307) 45.2 X77856 [29]
NahH (307) 44.2 X06412 [13]
PhIH (307) 43.9 X80765 [17]

2% Amino acid identities were obtained using the GAP program from the Wisconsin Package. The gap weight was 3.0 and the gap length weight was 0.1.

(Table 2). Homologous proteins include TbuW from the PKOL1 [21] are also very similar. The deduced amino acid

toluene/benzene monooxygenase gene cluster picketti  sequence was found to contain conserved residues involved

PKOL1 [21], XyIT from the TOL plasmid [16], NahT from in metal binding, catalysis, and dimerization that were

the NAH7 plasmid [16,48], and DmpQ, PhhQ, and PhiGidentified in crystallization studies of 2,3-dihydroxy-

from the phenol hydroxylase gene clusterf?sBudomonas biphenyl 1,2-dioxygenases [15,40]. These are indicated in

sp CF600 [41],P. putidaP35X [29], andP. putidaH [17], Figure 3.

respectively. Conserved cysteines characteristic of plant-

type ferredoxins [16] were identified in the deduced aminoCatechol 2,3-dioxygenase activity in cell extracts

acid sequence and are marked in Figure 3. These aminBxtracts of recombinant strains were tested for the ability

acids are potential ligands for plant-type [2Fe-2S] clusters.  to convert catechol to 2-hydroxymuconic semialdehyde
Each of the plant-type ferredoxin genes mentioned abovéHMS). The extract from JM109(pDTG900) had very low

is located directly upstream of a catechol 2,3-dioxygenase  activity (Table 3). This result was not surprising, since the

gene. OnlyxyIT has been characterized in detail. Mutationscosmid does not carry a strong promoter for expression and

in xylT from the TOL plasmid prevented growth gara-  the copy number of the cosmid is low. Activities in extracts

substituted aromatic compounds. The associated catechof DH5« carrying pDTG901 or pDTG904 were signifi-

2,3-dioxygenase (XylE) was shown to be sensitive to 4-  cantly higher. As seen with the catechol 2,3-dioxygenase

methylcatechol, anih vivo studies demonstrated that XylT from nitrobenzene-induced JS765 [30], heat treatment of

was able to reactivate XylE that had been inactivated by  theddpBTG901) extract (60C for 10 min) did not sig-

4-methylcatechol [33]. IlPseudomonasp CF600, DmpQ nificantly reduce enzyme activity (Table 3).

was shown to be required for growth wigtara-substituted In contrast to results with JS765 [30], the yellow color

phenols [34], and based on this, DmpQ is predicted to playproduced from catechol by DHEpDTG901) extracts did

a role similar to that of XylT: modulation of catechol 2,3-

dioxygenase (in this case DmpB) activity. By analogy, it . R

is pggsible th(at CdoT may exgar)1d the gubs};rate ragn)ée (;rfable3 Catechol 2,3-dioxygenase activity in cell extracts

CdoE by modifying its activity in the presence of suicide gy act source

Catechol 2,3-dioxygenase

substrates. specific activity fumol mir®
A 314-amino acid protein with a molecular weight of mg protein)

35020 is encoded bydoE The deduced amino acid

sequence had high homology with several catechol 2,33S763 3.04

dioxygenases (Table2), especially those of the I.2. :gggpgggg% g-ggS(o )

subfamily of extradiol dioxygenases [11]. The most similarDH5a(EDTG904) 026

protein is TdnC (84% amino acid identity) from the aniline-
and toluidine-degrading. putidaUCC2 [38]. CDOII from  apata from [30].
the TOL plasmid pWW15 [19], and TbuE froi. pickettii  PActivity after incubation of crude cell extract at 8D for 10 min.
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390 not fade with time, even when catechol was provided at a  will be interesting to identify the inducer associated with

reduced concentration (1QM) or when NAD (500uM) the cdo gene cluster.
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